Microbial Communities of Culture Water and African Catfish Reared in Different Aquaculture Systems in Nigeria Analyzed Using Culture Dependent Techniques

Main Article Content

D. Enyidi Uchechukwu
M. T. Okoli

Abstract

The microbial communities of culture water and catfish C. gariepinus from three replicates of earthen, concrete and tarpaulin ponds in Nigeria were analyzed. Waters was collected from 25 cm below pond water surface per culture system. Three catfish per replicate system were also collected and analyzed in the lab. Catfish gut, skin and gills were analyzed. Earthen ponds had significantly more diverse microbial community and coliform forming units (CFU/ml) 2.43 x10-4 CFU/ml than the rest systems. Earthen ponds had consortium of Klebsiella pneumonia, S. aureus and Salmonella enteritidis and E. coli, which was more diverse than all other aquaculture systems.  Microbiota of tarpaulin ponds was 2.10x10-4 /ml CFU and this was significantly (P<0.05) higher than concrete ponds (1.50x10-4 CFU/ml). Tarpaulin ponds had K. pneumoniae and E. coli, while concrete pond had S. aureus and S. enteritidis. Biofilm formation could have lead to colonization of the fish body part. The skin and gills had similar microbiota as the culture water compared to the gut. The gut microbial communities were not synonymous with the culture water.

Keywords:
African catfish, microbiota, aquaculture systems, fish gut microbiota, fish culture water.

Article Details

How to Cite
Uchechukwu, D. E., & Okoli, M. T. (2019). Microbial Communities of Culture Water and African Catfish Reared in Different Aquaculture Systems in Nigeria Analyzed Using Culture Dependent Techniques. Asian Journal of Fisheries and Aquatic Research, 5(1), 1-18. Retrieved from http://journalajfar.com/index.php/AJFAR/article/view/30066
Section
Original Research Article

References

Shipton T, Hecht T. A synthesis of the formulated animal and aqua feed industry in sub-Saharan African. In: by Moehl J, Halwart M (ed.) A Synthesis of the Formulated Animal and Aqua Feed Industry in Sub-Saharan Africa. CIFA Occasional Paper. 2005;26:1-13.

Enyidi UD, Pirhonen J, Kettunen J, Vielma J. Effect of feed protein: Lipid ratio on growth parameters of African catfish Clarias gariepinus after Fish Meal Substitution in the Diet with Bambaranut (Voandzeia subterranea) Meal and Soybean (Glycine max) Meal. Fishes, 2017;2:1.
Available:http://doi:doi:10.3390/fishes2010001

FAO. The State of World Fisheries and Aquaculture, FAO Fisheries and Aquaculture Department. FAO, Rome. 2012;209.
Available:http://www.fao.org/docrep/016/i2727e/i2727e.pdf (FAO, 2018)

FAO, State of the Worlds Fisheries and Aquaculture. FAO Rome Italy; 2018.
Available:http://www.fao.org/docrep/016/i2725e/i2627e.pdf (FAO, 2018)

Enyidi UD, Maduakor CJ. Prevalence of bacteria and Nematode parasites in African Catfish Clarias gariepinus cultured in small holder concrete ponds in Nigeria. Journal of Biology and Nature. 2017;7(4): 169-176.

Wong S, Rawls JF. Intestinal microbiota composition in fishes is influenced by host ecology and environment. Molecular Ecology. 2012;21(13):3100–3102.
Available:http/doi: 10.1038/srep24340

Parris DJ, Brooker RM, Morgan MA, Dixson DL, Stewart FJ. Whole gut microbiome composition of damselfish and cardinal fish before and after reef settlement. 2016;4:e2412.
Available:http:/DOI 10.7717/peerj.2412

Kaktcham PM, Temgoua JB, Zambou FN, Ruiz GD, Wacher C, Perez Chabela ML. Quantitative analyses of the bacterial microbiota of rearing environment, tilapia and common carp cultured in earthen ponds and inhibitory activity of its lactic acid bacteria on fish spoilage and pathogenic bacteria. World Journal of Microbiology and Biotechnology. 2017; 33:32.
Available:http://DOI 10.1007/s11274-016-2197-y

Buras NL. Microbiological aspects of fish grown in treated waste water. Water Research. 1993;21(10):1-10.
Available:http://DOI:10.1016/0043-1354(87)90092-3

Balcázar JL, De Blas I, Ruiz-Zazuela I, Cunningham D, Vandrell D, Muzquiz JL. The role of probiotics in aquaculture. Veterinary Microbiology. 2006;114:173-186.
Available:http://DOI:10.1016/j.vetmic.2006.01.009

Navarrete P, Magne F, Araneda C, Fuentes P, Barros L, Opazo R, Espejo R, Romero J. PCR-TTGE analysis of 16S rRNA from rainbow trout (Oncorhynchus mykiss) gut microbiota reveals host-specific communities of active bacteria. PloS One. 2012;7(2):e31335.
Available:https://doi.org/10.1371/journal.pone.0031335 PMID: 22393360

Luczkovich J, Stellwag E. Isolation of cellulolytic microbes from the intestinal tract of the pinfish, Lagodon rhomboides: size-related changes in diet and microbial abundance. Marine Biology. 1993;116(3): 381-388.
Available:http:// DOI: 10.1007/BF00350054

Hansen GH, Olafsen JA. Bacterial interactions in early life stages of marine cold water fish. Microbial Ecology. 1999; 38:1–26.
[PubMed: 10384006]
Available:http://doi:10.1007/s002489900158

Nayak SK. Role of gastrointestinal micro-biota in fish. Aquac Res. 2010;41:1553–1573.
Available:http://DOI:10.1111/j.1365-2109.2010.02546.x

Munro PD, Birkbeck TH, Barbour A. Influence of rate of bacterial colonization of the gut of turbot larvae on larval survival. In: Reinertsen H, DahI LA, Jørgensen L, Tvinnereim K (eds) Fish Farming Technology, Balkema AA, Rotterdam. 1993;85–92.

Munro PD, Barbour A, Birkbeck TH. Comparison of the gut bacterial flora of start-feeding larval turbot reared under different conditions. Journal of Applied Bacteriology. 1994;77:560–566.
Available:http://DOI:10.1016/0044-8486(87)90272-9

Bergh Ø. Bacteria associated with early life stages of halibut, Hippoglossus hippoglossus L., inhibit growth of a pathogenic Vibrio sp. Journal of Fish Diseases. 1995;18:31–40.
Available:http://DOI:10.1111/j.1365-2761.1995.tb01263.x

Griez L, Reyniers J, Verdonck L, Swings J, Ollevier F. Dominant intestinal microflora of seabream and sea bass larvae, from two hatcheries, during larval development. Aquaculture. 1997;155:387–399.
Available:http://doi:10.1016/j.dci.2016.06.011

Gómez GD, Balcázar JL. A review on the interactions between gut microbiota and innate immunity of fish. FEMS Immunology & Medical Microbiology. 2008; 52(2):145-54.
Available:http://doi:10.1111/j.1574-695X.2007.00343.x

Sullam KE, Essinger SD, Lozupone CA, O’Connor MP, Rosen GL, Knight R, Kilham SS, Russell JA. Environmental and ecological factors that shape the gut bacterial communities of fish: A meta-analysis. Molecular Ecology. 2012;21: 3363–3378.
Available:http/DOI:10.1111/j.1365-294X.2012.05552.x

Liu H, Guo X, Gooneratne R, Lai R, Zeng C, Zhan F, Wang W. The gut microbiome and degradation enzyme activity of wild freshwater fishes influenced by their trophic levels. Scientific Report. 2016;6(24340):1-12.
Available:http://DOI: 10.1038/srep24340

Ray AK, Ghosh K, Ringø E. Enzyme-producing bacteria isolated from fish gut: a review. Aquaculture Nutrition. 2012;18: 465-492.
Available:http:/DOI:10.1111/j.1365-2095.2012.00943.x

Vijayaram S, Kannan S, Muthukumar S. Isolation and characterization of probiotic bacteria isolated from diverse fish fauna of the trodden Vaigai river at Theni district. J.Chem. Pharm. Res. 2017;8(7):883-889.
Available:http/DOI:10.4103/bbrj.bbrj_87_17

Spor A, Koren O, Ley R. Unraveling the effects of the environment and host genotype on the gut microbiome. Nature Reviews Microbiology. 2011;9(4):279–290.
Available:htttp/DOI: 10.1038/nrmicro2540

Lyons PP, Turnbull JF, Dawson KA, Crumlish M. Phylogenetic and functional characterization of the distal intestinal microbiome of rainbow trout Oncorhynchus mykiss from both farm and aquarium settings. Journal of Applied Microbiology. 2016;122:347–363.
Available:http://DOI: 10.1111/jam.13347

Ringø E, Vadstein O. Colonization of Vibrio pelagius and Aeromonas caviae in early developing turbot, Scophthalmus maximus L. larvae. Journal of Applied Microbiology. 1998;84:227–233.

Available:http://DOI:10.1046/j.1365-2672.1998.00333.x

Ringø E, Birkbeck TH. Intestinal microflora of fish larvae and fry. Aquaculture Research. 1999;30:73–93.
Available:http://DOI:10.1046/j.1365-2109.1999.00302.x

Ringø E, Olsen GJ, Mayhew TM, Myklebust R. Electron microscopy of the intestinal microflora of fish. Aquaculture. 2003;227:395–415.
Available:http/DOI:10.1016/j.aquaculture.2003.05.001

Kim DH, Brunt J, Austin B. Microbial diversity of intestinal contents and mucus in rainbow trout (Oncorhynchus mykiss). Journal of Applied Microbiology. 2007; (102):1654–1664.
Available:http://DOI:10.1111/j.1365-2672.2006.03185.x

Merrifield DL, Olsen RE, Myklebust R, Ringø E. Dietary effect of soybean (Glycine max) products on gut histology and microbiota of fish. In: Soybean and Nutrition (El-Shemy, H. ed.), Intech, Rijeka, Croatia. 2011;231–250.
[ISBN 978-953-307-536-5]

Fierer N, Jackson RB. The diversity and biogeography of soil bacterial communities. Proceedings of the National Academy of Sciences. 2006;103:626–631.
Available:http://DOI:10.1073/pnas.0507535103

Giatsis C, Sipkema D, Smidt H, Verreth J, Verdegem M. The colonization dynamics of the gut microbiota in Tilapia larvae. PLoS One. 2014;9(7):e103641.
Available:http://doi:10.1371/journal.pone.0103641

Schreier HJ, Mirzoyan N, Saito K. Microbial diversity of biological filters in recirculating aquaculture systems. Current Opinion in Biotechnology. 2010;21:318-325.
Available:http/DOI:10.1016/j.copbio.2010.03.011

Ortiz-Estrada MA, Gollas-Galvan T, Martınez-Cordova LR, Martınez-Porchas M. Predictive functional profiles using metagenomic 16S rRNA data: A novel approach to understanding the microbial ecology of aquaculture systems. Reviews in Aquaculture. 2018;1–12.
Available:http://DOI:10.1111/raq.12237

Llewellyn MS, McGinnity P, Dionne M, Letourneau J, Thonier F, Carvalho GR, Creer S, Derome N. The biogeography of the Atlantic salmon (Salmo salar) gut microbiome. ISME J. 2015;10:1280–1284.

Cahill MM. Bacterial flora of fishes: A review. Micro Ecol. 1990;19:21–41.
Available:http://DOI:10.1007/BF02015051

Spanggaard B, Huber I, Nielsen J, Nielsen T, Appel KF, Gram L. The microflora of rainbow trout intestine: A comparison of traditional and molecular identification. Aquaculture. 2000;182:1–15.
Available:http/DOI:10.1016/S0044-8486(99)00250-1

MacFaddin JF. Biochemical tests for identification of medical bacteria. 3rd ed. Lippincott Williams & Wilkins, Philadelphia, PA USA; 2000.

Buchanan RE, Giboons NE. Bergey's manual of determinative bacteriology. 8th Edn. Baltimore, Williams & Wilkins; 1974.

Green Berge AE, Clesceri LS, Eaton AD. Standard methods for examination of water and waste water. 18th edn. Prepared and Published by APHA & American water works Association. Water Enviroment Federation; 1992.

Chessbrough M. District laboratory practice in tropical countries. Part 2. Cambridge University Press. Campbridge, UK; 2002.

Harley. Laboratory exercises in micro-biology, 6th ed. McGraw Hill, New York, NY; 2005.

Matsen JM. Antimicrobial susceptibility test. Laboratory testing in support of antimicrobial therapy. The C. V. Mosby Company, St. Louis; 1980.

Kaktcham PM, Temgoua JB, Zambou FN, Ruiz GD, Wacher C, Perez Chabela ML. Quantitative analyses of the bacterial micro-biota of rearing environment, tilapia and common carp cultured in earthen ponds and inhibitory activity of its lactic acid bacteria on fish spoilage and pathogenic bacteria. World Journal of Microbiology and Biotechnology. 2017; 33(2).
Available:http://DOI10.1007/s11274-016-2197-y

Larsen A, Tao Z, Bullard SA, Arias CR. Diversity of the skin microbiota of fishes: Evidence for host species specificity. FEMS Microbiol Ecol. 2013;85(3):483-94. Available:http://doi: 10.1111/1574-694

Al-Hisnawi AA, Mustafa JM, Yasser YK, Hussain KA, Jabur AM. Influence of aquatic environment on microbiota of Liopropoma santi fish in a local river in Iraq. Karbala International Journal of Modern Science. 2016;2:41-45.
Available:http://DOI:10.1016/j.kijoms.2016.01.001

Fernandez RD, Tendencia EA, Leano EM, Duray MN. Bacterial flora of milkfish, Chanos chanos, eggs and larvae. Fish Pathology. 1996;31:123–128.
Available:http://DOI:10.3147/jsfp.31.123

Wong S, Rawls JF. Intestinal microbiota composition in fishes is influenced by host ecology and environment. Molecular Ecology. 2012;21(13):3100–3102.
Available:http/doi:10.1038/srep24340

Sugita H, Tsunohara M, Ohkoshi T, Deguchi Y. The establishment of an intestinal microflora in developing goldfish (Carassius auratus) of culture ponds, Microbial Ecology. 1988;15:333-334.
Available:http/DOI:10.1007/BF02012646

Austin B. The bacterial microflora of fish. The Scientific World Journal. 2002;6:931-45.
Available:http://doi:10.1100/tsw.2006.181

Fierer N, Jackson RB. The diversity and biogeography of soil bacterial communities. Proceedings of the National Academy of Sciences. 2006;103:626–631.
Available:http://DOI:10.1073/pnas.0507535103

Parris DJ, Brooker RM, Morgan MA, Dixson DL, Stewart FJ. Whole gut micro-biome composition of damselfish and cardinal fish before and after reef settlement. Peer J. 2016;4:e2412.
Available:https://doi.org/10.7717/peerj.2412

Smith CJ, Danilowicz BS, Meijer WG. Characterization of the bacterial community associated with the surface and mucus layer of whiting (Merlangius merlangus). FEMS Microbiol Ecol. 2007;62:90–97.
Available:http/DOI:10.1111/j.1574-6941.2007.00369.x

Wilson SK, Burgess SC, Cheal AJ, Emslie M, Fisher R, Miller I, Polunin NV, Sweatman H. Habitat utilization by coral reef fish: Implications for specialists vs. generalists in a changing environment. Journal of Animal Ecology. 2008;77(2): 220-228.
Available:http/DOI10.1111/j.1365-2656.2007.01341.x

Nguyen DDL, Ngoc HH, Dijoux D, Loiseau G, Montet D. Determination of fish origin by using 16S rDNA fingerprinting of bacterial communities by PCR-DGGE: An application on Pangasius fish from Viet Nam. Food Control. 2008;19:454– 460.
Available:htttp://DOI:10.1016/j.foodcont.2007.05.006

Rajkowski KT. Biofilms in fish processing. In biofilms in the food and beverage industries wood head publishing series in Food Science, Technology and Nutrition. 2009;499-516.

Klausen M, Aaes-Jorgensen A, Molin S, Tolker-Nielsen T. Involvement of bacterial migration in the development of complex multicellular structures in Pseudomonas aeruginosa biofilms. Molecular Micro-biology. 2003a;50:61–68.
Available:http://DOI:10.1046/j.1365-2958.2003.03677.x

Klausen M, Heydorn A, Ragas P, Lambertsen L, Aaes Jorgensen A, Molin S, Tolker-Nielsen T. Biofilm formation by Pseudomonas aeruginosa wild type, flagella and type IV pili mutants. Molecular Microbiology. 2003b; 48(6):1511-24.
Available:http://DOI:10.1046/j.1365-2958.2003.03525.x

da Silva JLS, Cavalcante DH, de Carvalho FCT, Vieira RHSF, e Sá MVC, de Sousa OV. Aquatic microbiota diversity in the culture of Nile tilapia (Oreochromis niloticus) using bioflocs or periphyton: Virulence factors and biofilm formation. Acta Scientiarum. 2016;38(3): 233-241.
Available:http://www.uem.br/acta
[ISSN printed: 1806-2636, 1807-8672]
DOI: 10.4025/actascianimsci.v38i3.31910 Acta Scientiarum. Animal Sciences.

Blanch A, Alsina M, Simon M, Jofre J. Determination of bacteria associated with reared turbot (Scophthalmus maximus) larvae. 1997;82:729–734.
DOI: 10.1046/j.1365-2672.1997.00190.x

Reid HI, Treasurer JW, Adam B, Birkbeck TH. Analysis of bacterial populations in the gut of developing cod larvae and identification of Vibrio logei, Vibrio anguillarum and Vibrio splendidus as pathogens of cod larvae. Aquaculture 2009;288:36–43.
DOI: 10.1016/j.aquaculture.2008.11.022

Gatesoupe FJ, Fauconneau B, Deborde C, Hounoum BM, Jacob G, Moing A, Corraze G, Medale F. Intestinal microbiota in rainbow trout, Oncorhynchus mykiss, fed diets with different levels of fish-based and plant ingredients: A correlative approach with some plasma metabolites. Aqua-culture Nutrition; 2018.
Available:https://doi.org/10.1111/anu.12793

Miao M, Jiang B, Jin Z, BeMiller N. Microbial starch-converting enzymes: Recent insights and perspectives. In Comprehensive Reviews in Food Science and Food Safety. 2018;(17):1238-1260.
Available:http:// DOI: 10.1111/1541-4337.12381

Lam H, Oh DC, Cava F, Takacs CN, Clardy J, de Pedro MA, Waldor MK. D-amino acids govern stationary phase cell wall remodeling in bacteria. Science. 2009; 325:1552–1555.
Available:http://DOI: 10.1126/science.1178123

Kolodkin-Gal I, Romero D, Cao S, Clardy J, Kolter R, Losick R. D-Amino acids trigger biofilm disassembly. Science. 2010; 328(5978):627–629.
Available:http://DOI:10.1126/science.1188628

Kostakioti M, Hadjifrangiskou M, Hultgren SJ. Bacterial biofilms: Development, dispersal and therapeutic strategies in the dawn of the postantibiotic era. Cold Spring Harb Perspect Med; 2013.
Available:http://doi:10.1101/cshperspect.a010306