Preliminary Trials on Hatchery and Larval Development of the Sea Cucumber, Holothuria scabra (Jaeger 1883), in the Sultanate of Oman

Khalfan M. Al-Rashdi1*, Michel R. Claereboudt2 and Igor Eeckhaut3

1Aquaculture Center, Ministry of Agriculture and Fisheries Wealth, 427 Muscat P.C 100, Oman.
2College of Agricultural and Marine Sciences, Sultan Qaboos University, 34 Muscat P.C. 123, Oman.
3Biology of Marine Organisms and Biomimetism, University of Mons-Hainaut, 7000 Mons, Belgium.

Authors’ contributions

This work was carried out in collaboration between all authors. Authors KMA and IE designed the study, wrote the protocol and wrote the first draft of the manuscript. Authors KMA and MRC performed the statistical analysis and managed the analyses of the study. All authors read and approved the final manuscript.

Article Information

DOI: 10.9734/AJFAR/2018/v2i30009

Received 28 October 2018
Accepted 05 February 2019
Published 19 February 2019

ABSTRACT

Although sea cucumber Holothuria scabra has always been part of the traditional exploitation of the benthos of Mahout Bay in the Arabian Sea, the foreign demand for the product and its high price have put increased pressure on the resource leading rapidly to overfishing. Aquaculture of this species has developed as a response to the overfishing problem but has not been yet studied in Oman. As a first step to evaluate its potential for aquaculture in Oman it was thus necessary to conduct hatchery trials. Four hatchery trials were conducted to evaluate the quality of the local broodstock, the response and efficiency of in-vitro maturation and fertilization and the success of larval development and rearing. Collected animals of 200-600 g were transported by road for 5 hours with zero evisceration to the Hatchery station. In-vitro maturation and fertilization success of more than 90% were achieved using the maturation inducing fractions (MIF) method leading to the development of mature eggs and normal embryos larvae. Auricularia larval stages were completed within 15 days and fed normally on microalgae Phaeodactylum tricornutum, Chaetoceros sp. and...
1. INTRODUCTION

Holothurians commonly known as sea cucumbers are marine invertebrates of significant importance for marine ecosystems and for a limited number of species as a valuable fishery generally for export. From the early 1990s, the populations of various species of sea cucumbers declined due to an increasing demand of Asian markets, particularly those of China [1]. Among these species, Holothuria scabra is considered as one of the most valuable sea cucumber for bêche-de-mer production and have been widely fished and overfished in the tropics [2]. It is currently valued at more than 1000 US$ per kg dry weight [3], and the demand from the Asian market remains strong [4]. This increasing demand from Asian markets driving high price, an often inadequate management of the fishery and the biological characteristics of the species such as slow growth and easy to access shallow water habitat resulted globally in severe overfishing [5]. To avoid overexploitation of natural populations while maintaining a sustainable level of exports, aquaculture is considered as one of the potential solutions for H. scabra production [1,6]. Several countries have progressively developed a viable aquaculture production and in some cases have initiated restocking or sea ranching programs [1,7,8]. Although the sea cucumber H. scabra has always been a small part of the traditional exploitation of the benthos in Mahout Bay of Arabian Sea [9], the foreign demand for the product overseas and its high price have put increased pressure on this resource locally leading rapidly to overfishing [10].

The natural spawning of this species in Oman has been recently documented and showed, as holothurians in many other locations, an annual reproductive cycle [11,12,13,14,15]. Natural maturation occurred in February and March followed by spawning in April and May, which is correlated to high sea surface temperature and precipitation as both may serve as exogenous synchronizing cues for gamete maturation and spawning [11]. Alarming signs of the of the Omani population of H. scabra overfishing have been observed with stock densities decreasing to less than 1 individual per ha [10], a regular decrease in the size of animal processed and a progressive switch to less valuable species in only a few years of exploitation. Therefore, restocking and stock enhancement in addition to fisheries management policies are needed to ensure the sustainability of this resource. This article documents the first attempts made to develop hatchery techniques for the Omani sea cucumber H. scabra population as an initial step towards aquaculture development and stock enhancement programs.

2. MATERIALS AND METHODS

2.1 Culture Site and System

The Aquaculture Research Unit of Sultan Qaboos University located in Al-Hail some 40 km north of the capital of Oman, Muscat, was used to conduct H. scabra hatchery trials. Land based outdoors tanks were used to keep the broodstock of H. scabra. The tanks were continuously supplied with seawater extracted from a marine well at a salinity of 37 PSU and a temperature of 29°C. For the spawning and larval rearing experiments, the water was filtered using sand filter and 5µm particle filter and then passed through a UV sterilization unit [16].

2.2 Broodstock Collection and Transportation

In total 80 healthy animals weighing between 200-600g were collected at 4 occasions from Mahout Bay of Al-Wusta Province by local fishermen and through SCUBA diving starting between September 2009 and November 2010 (Fig. 1). Collected animals were carefully handled to avoid evisceration, cleaned by gently washing the body with seawater and packed at low density of 6-8 individuals per transparent plastic bags filled with 1-2 L of sea water and inflated with pure oxygen. The bags were placed

Nanochloropsis sp. Average settlement rate and size for pentactula juveniles were closely to 9% and 0.5 mm, respectively, nearly one month post-fertilization (PF). However, a high mortality of 70% was observed during early larval development caused by ciliated protozoans and copepods attack. The culture of H. scabra population in Oman is thus promising but further research is needed to ensure higher survival rates, particularly in the early larval stages where adequate water filtration and sterilization is essential.

Keywords: Sea cucumber; Holothuria scabra; hatchery; larval development, Oman.
in cool-boxes containing dry ice to maintain a low
temperature in the boxes during the 5 hours trip
to Muscat. Upon arrival at the hatchery, the
animals were acclimatized while still in the
transport bags with ambient seawater and later
transferred to clean tanks with running
oxygenated sea water until experimentation.

2.3 Induced Maturation and Fertilization

For this study, 4 hatchery trials of in-vitro
maturation and fertilization (Table 1) were
conducted using an artificial maturation
substance extracted from sea urchin oocytes
[17]. It is referred as Maturation Inducing
Fractions (MIF) and based on hatchery works in
Madagascar [17,18]. Genitors were dissected
through a longitudinal incision on the anterior
part of the trivium to extract male and female
gonads for the in-vitro fertilization. Body fluid was drained and the gonads of males
and females were gently removed using forceps
and placed in separate beakers with filtered sea
water. Gonads were then cut separately into
small pieces using scissors to release oocytes
and sperm cells from gonadal tubules. The
oocytes were then sieved on 60 µm mesh with
filtered sea water and placed in petri dishes at
concentrations of 100 oocytes/ml. Maturation of
the oocytes was induced with the MIF solution for
2 hours, then rinsed with filtered sea water to
remove MIF residuals. Fertilization was achieved
by adding few drops of sperm suspension to the
mature oocytes. The fertilized eggs were kept in
a shallow basin without aeration until hatching of
gastruled embryos. Observations and
photography of embryonic development stages
were carried out on random samples every 30-60
minutes using a light microscope at 40X
magnification.

Fig. 1. Location of the *H. scabra* population used for the spawning experiments. Individuals
were collected from various locations within Mahout Bay
2.4 Larval Development and Rearing

Newly-hatched gastrula larvae were transferred into 100 L tanks filled with 85 L of 2-µm filtered and UV-treated seawater and provided with aeration through air diffusers. Feeding and regular water exchange commenced with development of auricularia stage larvae from day-2 post-fertilization (PF). The water was changed by siphoning and the larvae collected onto a 60 µm wet sieve. Tanks were refilled with 2-µm filtered and UV-treated seawater. This method of water exchange was continued daily for 20 days until larval settlement. The newly settled juveniles were maintained in a flow-thru system with 2-µm filtered and UV-treated seawater.

H. scabra larvae were fed daily from the second day PF with different types of microalgae until settlement. Three mixed algae were cultured under laboratory conditions with artificial light and aeration. A temperate species *Phaeodactylum tricornutum* was cultured at low temperature from 19 to 24°C in the laboratory. *Chaetoceros sp.* and *Nannochloropsis sp.* were cultured both under laboratory and outdoor conditions (29-30°C) and fertilized with Guillard’s F/2 medium. Initially, the developing larvae were fed twice daily with *P. tricornutum* at a final concentration of approximately 2500 cells per liter. On day 8 PF, the final concentration of *P. tricornutum* was increased to 5000 cells per liter. During the Dolio-laria stage (a non-feeding stage), the feeding was temporarily suspended and resumed after metamorphosis (typically on day 20 PF). At this stage both microalgae (*Chaetoceros, Nannochloropsis* and *Phaeodactylum*) and particulate diet (dried and powdered *Sargassum* sp.) were added to favor settlement and feed the newly settled juveniles.

2.5 Larval Settlement

As a final step of the hatchery trials, late dolio-laria larvae at day 19 were introduced to new tanks with filtered and irradiated sea water under a flow-thru system for larval settlement purpose. In order to count the settlement rate, settled pentactula juveniles were detached after 10 days of introducing to the settlement tanks.

3. RESULTS

3.1 Maturation Induction and Fertilization

All collected animals survived through 5 hours road transportation and were successfully transferred to holding tanks. For the artificial maturation experiments, all female genitors positively responded to the MIF technique and produced more than 90% normal mature oocytes after 2 hours of induction. A fertilization rate of 90% was also achieved on these artificially matured oocytes. A total of more than 400,000 larvae were produced over 4 independent *in-vitro* fertilization trials and developed successfully into normal embryos and larvae (Table 1). Although 40-70% mortality was observed during larval development, 9% of the produced larvae settled successfully as pentactula juveniles.

3.2 Embryonic and Larval Development

Larval development was normal and follows the documented stages for *H. scabra* described in the literature (Fig. 2). The mean diameter of fertilized eggs was 150 ± 3.0 µm and underwent cell division within 1.5 hours. They developed into blastula and gastrula around 12 and 16 hours post fertilization (PF), respectively. Early hatched auricularia stage was observed around 36 hours PF, and continued to develop to mid-auricularia larvae at day 6 PF. Late auricularia larvae was observed by day-13 PF and transformed to non-feeding dolio-laria larvae after completing 15 days PF. There was a mass mortality reached 70% during the first 3 days of rearing. Primary microscopic observations of the larvae, revealed an abundance of ciliate protozoans and copepods in the larval tanks. However, from the 4th day of development, survival rate remained almost stable. After 13 days, the larvae reached late auricularia stage characterized by the appearance of lipid spheres at the edge of the cilia band. The first settlements were observed on day 20 PF and small juveniles began to appear on most trials on the bottom of the rearing tank 3 to 4 weeks PF. They appeared transparent and only visible using a light torch. Their size was estimated at 0.5 mm.

There was a high mortality during the first 3 days PF during all four trials. With the exception of trial 1 for which there were no microalgae to feed the larvae, from day 4 to day 15 mortality remained quite low. A second mortality was observed between day 15 and day 21 in all three remaining
trials (Fig. 3). During the daily microscopic observations of the larvae, abundant ciliate protozoans and copepods were observed in the larval tanks. However, after the 4th day PF, survival was stable and reached 9% over 20 days PF.

3.3 Larval Settlement

Fig. 4 presents the results of settled larvae and their settlement rates among 3 hatchery trials after 29 days PF. Late doliolaria larvae were induced to settle by adding mixed microalgae and dried and powdered _Sargassum sp._ in a daily basis, which acted both as an inducer for the larvae to settle and serve also as a food for the newly settled pentactula. After 10 days of post-settlement, the results show high settlement rate of 9.2% in trial 1, while low rate of 8.3% was found in trial 2. Overall, the average settlement rate is almost 9% from the 3 hatchery trials. The size of settled juveniles was found at 0.5 mm ± 0.2 after 30 days PF.

<table>
<thead>
<tr>
<th>Hatchery trial number</th>
<th>Broodstock size (g)</th>
<th>Fertilized oocytes</th>
<th>Produced larvae</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Male</td>
<td>Female</td>
<td></td>
</tr>
<tr>
<td>F1</td>
<td>287 (1)</td>
<td>287&346 (2)</td>
<td>160000</td>
</tr>
<tr>
<td>F2</td>
<td>245 (1)</td>
<td>457&375 (2)</td>
<td>140000</td>
</tr>
<tr>
<td>F3</td>
<td>319 (1)</td>
<td>320&425 (2)</td>
<td>85000</td>
</tr>
<tr>
<td>F4</td>
<td>200&260 (2)</td>
<td>600&375 (2)</td>
<td>120000</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td></td>
<td>505000</td>
</tr>
</tbody>
</table>

Fig. 2. Different stages of larval development in _H. scabra_. The scale bars represent 100 µm. A: Fertilized oocyte (10 min PF); B: two-cell embryo (90 min PF); C: four-cell embryo (120 min PF); D: morula stage embryo (3 hours PF); E: early stage of gastrulation (12 hours PF); F: Gastrula (15 hours PF); G: very early auricularia larva (the mouth is formed) hatched (32 hours PF); H: late auricularia larva (13 days PF); I: non-feeding doliolaria larva (15 days PF) and J: Pentactula with tentacles (20 days PF)
4. DISCUSSION

Overfishing of *H. scabra* went beyond just an ecological issue; it became a socio-economic problem as livelihoods and income of many coastal dwellers rely on its fishery.

There are several national management measures applied on this fishery, including total ban as the current case here in Oman; however, these seem to be insufficient for a sustainable use of the resources [6]. A sustainable and efficient solution so far to enhance production as well as depleted natural stock of this species is through developing aquaculture [5]. To ensure *H. scabra* aquaculture sustainability and affordability, the production of fertilizable eggs and larvae in large quantities and at any time is a key element [18]. Several methods have been described to induce *H. scabra* spawning, mainly thermal shock [19,20,21] alone or combination with water pressure and drying treatments or algae [22]. However, these methods may not be reliable to produce mature fertilizable oocytes outside the natural reproductive season of the organism [18,23]. Such critical point has been
addressed through a new methodology based on *in-vitro* maturation using artificial inducers [17] which recently have been commercialized [24]. The use of such maturation inducers allows holothurians farmers to obtain clean, fertilized eggs year-round. This method was tested in Oman *H. scabra* population and achieved more than 90% oocyte maturation and fertilization, which is consistent with Eeckhaut et al. [18] results on Madagascar *H. scabra* populations. The method requires the sacrifice of several large adult specimens which may be difficult to justify for a locally endangered species, although these few specimens will produce 1000s of juveniles [25]. Despite larval developmental timing variations among various *H. scabra* populations, the embryos underwent normal development processes up to the pentactula stage over 21 days PF which is consistent with published values for larval development in *H. scabra* [3].

In our study settlement was achieved by conditioning the tanks with algae as substrates, which is consistent also with published literatures confirming that settlement will not be successful without providing settlement cues [26,27]. The flow-thru system which was used during rearing settled pentactula was found to improve the growth and survival rates. However, the key element during this period is the stocking density [26].

The high mortality observed during the first few days PF took place before feeding and is thus unlikely the result of a contamination by the feeding solutions. Ramofafia et al. [28] also observed high mortality of 50% of the embryo to the appearing of the early auricularia stage. However, the abundant copepods and ciliates may be responsible for this temporary mortality [29]. Copepods attack larvae either directly or by repeated collisions causing bodily damage to the larvae [19]. Asha & Muthia [30] observed 65% mortality due to ciliates on the 9th day of rearing *H. spinifera* larvae. Since the water used for larval rearing was filtered and UV-treated, it is unlikely the source of the copepods and ciliates, but some of the equipment used to siphon the water, transfer the larvae from one container to another, the container themselves may have been contaminated by a concomitant fish hatchery and emphasize the need for high levels of training in sterilization and decontamination and asepsis [31]. Unfortunately, separating copepods from sea cucumber larvae is difficult as their sizes are similar [32]. To control copepod population, Pitt & Duy [19] recommended the application of trichlorofon (Dipterex), an insecticide which may be effective against some arthropod infestation. Alternative solutions using either naturally occurring substances or better management practices are needed [33]. In addition, optimization of the diet using locally available species is also necessary [34].

5. CONCLUSION

The result presented here is a first insight on the artificial production of sea cucumbers in Oman. Maturation inducing fractions (MIF) method was found to be an efficient, effective and dependable new technique to produce, in a large scale, mature and fertilized *H. scabra* oocytes leading to develop normal competent larvae. However, further studies should be made to minimize the mortality rate during early larval development and to enhance the rates of larval settlement.

The potential to develop sea cucumber aquaculture in Oman is high because (i) *H. scabra*, a high commercial value, is still present in Oman particularly in shallow waters (ii) there are some natural locations ideally suited for sea ranching such as the Bay of Mahout, (iii) the human and the basic technological potential are already in place. For example, less than 1% of the surface of the Bay of Mahout Bay could support the sea ranching of 4 M of sea cucumbers *H. scabra* if it is supplied by an efficient farm having 50,000 m² of ponds and an efficient hatchery with 600,000 L of adequate tanks.

ETHICAL APPROVAL

All animals used in these experiments were euthanized following to the ethical standards of the Ministry of Agriculture and Fisheries Wealth and only the minimum number necessary to obtain the number of fertilized oocytes were used.

ACKNOWLEDGEMENTS

This study was funded with thanks by the Agricultural and Fisheries Development Fund through research project; code No. 1/3/17, titled: Diversity, abundance and Aquaculture Potential of the Sea cucumber, Holothuria scabra, in the Sultanate of Oman. We give grateful thanks to Mohamed Al-Wahaibi, Adel Al-Bulushi, Ali Al-Ajmi and Mohamed Al-hikmani for their help in...
hatchery activities. We would like to acknowledge Indian Ocean Tre pang (IOT) Company for the technical support and using their patent.

COMPETING INTERESTS

Authors have declared that no competing interests exist.

REFERENCES

19. Pitt R, Duy NDQ. Breeding and rearing of the sea cucumber Holothuria scabra in

22. Agudo N. Sandfish hatchery techniques. The WorldFish Center, Secretariat of the Pacific Community, and Australian Center for International Agricultural Research. 2006;42.

© 2018 Al-Rashdi et al.; This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Peer-review history:
The peer review history for this paper can be accessed here: http://www.sdiarticle3.com/review-history/47061