Assessing Colouration in Ichthyology: Insights from the Melanophore Index Perspective

P. Nivethitha

Department of Environmental Sciences, Bharathiar University, Coimbatore – 641 046, India.

L. Arul Pragasan *

Department of Environmental Sciences, Bharathiar University, Coimbatore – 641 046, India.

*Author to whom correspondence should be addressed.


Abstract

Fish colouration significantly influences various aspects of their biology, including communication, camouflage, and mate selection. Among the pigment cells responsible for generating colours, melanophores are particularly significant due to their ability to produce dark pigments called melanin. The Melanophore Index (MI) quantitatively evaluates melanophore density and distribution across different fish species. This comprehensive review delves into the significance of fish colouration, the biology of melanophores, methods for assessing MI, factors influencing MI variations, and the ecological and evolutionary implications of MI in fish populations. By synthesizing current research and highlighting gaps in knowledge, this review aims to provide a foundational understanding of assessing fish colouration through the lens of the Melanophore Index.

Keywords: Fish colouration, pigment cells, melanin, melanophore, melanophore index


How to Cite

Nivethitha, P., & Pragasan , L. A. (2024). Assessing Colouration in Ichthyology: Insights from the Melanophore Index Perspective. Asian Journal of Fisheries and Aquatic Research, 26(5), 32–52. https://doi.org/10.9734/ajfar/2024/v26i5764

Downloads

Download data is not yet available.

References

Bertolesi GE, Zhang JZ, McFarlane S. Plasticity for colour adaptation in vertebrates explained by the evolution of the genes pomc, pmch and pmchl. Pigment Cell & Melanoma Research. 2019;32(4):510-27.

Available:https://doi.org/10.1111/pcmr.12776

PMid:30791235

PMCid:PMC7167667

Cal L, Suarez-Bregua P, Cerdá-Reverter JM, Braasch I, Rotllant J. Fish pigmentation and the melanocortin system. Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology. 2017;211:26-33.

Available:https://doi.org/10.1016/j.cbpa.2017.06.001

PMid:28599948

Hubbard JK, Uy JA, Hauber ME, Hoekstra HE, Safran RJ. Vertebrate pigmentation: from underlying genes to adaptive function.Trends in Genetics. 2010; 26(5):

-239.

Available:https://doi.org/10.1016/j.tig.2010.02.002

PMid:20381892

Seehausen O, Schluter D. Male–male competition and nuptial–colour displacement as a diversifying force in Lake Victoria cichlid fishes. Proceedings of the Royal Society of London. Series B: Biological Sciences. 2004;271(1546):1345-53.

Available:https://doi.org/10.1098/rspb.2004.2737

PMid: 15306332

PMCid:PMC1691729

Endler JA. Natural and sexual selection on color patterns in poeciliid fishes. In Evolutionary ecology of neotropical freshwater fishes: Proceedings of the 1st international symposium on systematics and evolutionary ecology of neotropical freshwater fishes, held at DeKalb, Illinois, USA, Springer Netherlands. 1984;95-111.

Available:https://doi.org/10.1007/978-94-015-7682-6_7

Karan EA. Capturing the Diversity and Evolution of Color and Color Patterns Across Reef Fishes. University of California, Los Angeles; 2023.

Luo M, Lu G, Yin H, Wang L, Atuganile M, Dong Z. Fish pigmentation and coloration: Molecular mechanisms and aquaculture perspectives. Reviews in Aquaculture. 2021;13(4):2395-412.

Available:https://doi.org/10.1111/raq.12583

Miyazawa S. Pattern blending enriches the diversity of animal colorations. Science Advances. 2020;6(49):eabb9107.

Available:https://doi.org/10.1126/sciadv.abb9107

PMid:33268371

PMCid:PMC7710386

Svitačová K, Slavík O, Horký P. Pigmentation potentially influences fish welfare in aquaculture. Applied Animal Behaviour Science. 2023;105903.

Available:https://doi.org/10.1016/j.applanim.2023.105903

Endler JA. Disruptive and cryptic coloration. Proceedings of the Royal Society B: Biological Sciences. 2006; 273(1600):2425-6.

Available:https://doi.org/10.1098/rspb.2006.3650

PMid: 16959630

PMCid: PMC1634903

Khan MK. Functional significance of conspicuous colouration in ontogenetic colour changing damselflies (Doctoral dissertation, Macquarie University); 2022.

Levin DA, Kerster HW. Natural selection for reproductive isolation in Phlox. Evolution. 1967;679-87.

Available:https://;doi.org/10.2307/2406765;

Available:https://doi.org/10.1111/j.1558-5646.1967.tb03425.x

PMid: 28563087

Iwasa Y, Pomiankowski A. Continual change in mate preferences. Nature. 1995; 377(6548):420-2. Available:https://doi.org/10.1038/377420a0

PMid:7566117

Møller AP, Cuervo JJ. Speciation and feather ornamentation in birds. Evolution. 1998;52(3):859-69.

Available:https://doi.org/10.1111/j.1558-5646.1998.tb03710.x

https://doi.org/10.2307/2411280

PMid:28565248

Seehausen O, Schluter D. Male–male competition and nuptial–colour displacement as a diversifying force in Lake Victoria cichlid fishes. Proceedings of the Royal Society of London. Series B: Biological Sciences. 2004;271(1546): 1345-53.

Available:https://doi.org/10.1098/rspb.2004.2737

PMid:15306332

PMCid:PMC1691729

Albert AY, Millar NP, Schluter D. Character displacement of male nuptial colour in threespine sticklebacks (Gasterosteus aculeatus). Biological Journal of the Linnean Society. 2007;91(1):37-48.

Anderson CN, Grether GF. Character displacement in the fighting colours of Hetaerina damselflies. Proceedings of the Royal Society B: Biological Sciences. 2010;277(1700):3669-75.

Available:https://doi.org/10.1098/rspb.2010.0935

PMid:20591870

PMCid:PMC2982247

Hopkins R, Rausher MD. Pollinator-mediated selection on flower color allele drives reinforcement. Science. 2012;335 (6072):1090-2.

Available:https://doi.org/10.1126/science.1215198

PMid:22300852

Grossenbacher DL, Stanton ML. Pollinator‐mediated competition influences selection for flower‐color displacement in sympatric monkeyflowers. American journal of botany. 2014;101(11):1915-24. Available:https://doi.org/10.3732/ajb.1400204

PMid: 25366857

Gaither MR, Coker DJ, Greaves S, Sarigol F, Payet SD, Chaidez V, Sinclair‐Taylor TH, DiBattista JD, Berumen ML. Does color matter? Molecular and ecological divergence in four sympatric color morphs of a coral reef fish.Ecology and Evolution. 2020;10(18):9663-81.

Available:https://doi.org/10.1002/ece3.6566

PMid:33005338 PMCid:PMC7520180

Akat E, Yenmiş M, Pombal MA, Molist P, Megías M, Arman S, Veselỳ M, Anderson R, Ayaz D. Comparison of vertebrate skin structure at class level: A review. The Anatomical Record. 2022;305(12):3543-608.

Available:https://doi.org/10.1002/ar.24908

PMid:35225424

Alonso WJ. Evolution of bright colours in animals: worlds of prohibition and oblivion. F1000Research. 2015;4.

Available:https://doi.org/10.12688/f1000research.6493.2

PMid:27853502 PMCid:PMC5089127

Leclercq E, Taylor JF, Migaud H. Morphological skin colour changes in teleosts. Fish and Fisheries. 2010;11 (2):159-93.

Available:https://doi.org/10.1111/j.1467-2979.2009.00346.x

Grenier S, Barre P, Litrico I. Phenotypic plasticity and selection: nonexclusive mechanisms of adaptation. Scientifica. 2016; 1-9.

Available:https://doi.org/10.1155/2016/7021701

PMid:27313957

PMCid:PMC4895053

Aspengren S, Norström E, Wallin M. Effects of hydroquinone on cytoskeletal organization and intracellular transport in cultured Xenopus laevis melanophores and fibroblasts. International Scholarly Research Notices. 2012;2012.

Available:https://doi.org/10.5402/2012/524781

Fujii RY. The regulation of motile activity in fish chromatophores. Pigment Cell Research. 2000;13(5):300-19.

Available:https://doi.org/10.1034/j.1600-0749.2000.130502.x

PMid:11041206

Nüsslein‐Volhard C, Singh AP. How fish color their skin: a paradigm for development and evolution of adult patterns: multipotency, plasticity, and cell competition regulate proliferation and spreading of pigment cells in zebra fish coloration. BioEssays. 2017;39(3):1600 231.

Available:https://doi.org/10.1002/bies.201600231

Sugimoto M. Morphological color changes in fish: regulation of pigment cell density and morphology. Microscopy research and technique. 2002; 58(6):496-503.

Available:https://doi.org/10.1002/jemt.10168

PMid:122427

Bagnara JT, Hadley ME. Chromatophores and color change.1973

Aspengren S, Sköld HN, Wallin M. Different strategies for color change. Cellular and Molecular Life Sciences. 2009;66:187-91.

Available: https://doi.org/10.1007/s00018-008-8541-0

Bronner ME, LeDouarin NM. Evolution and development of the neural crest: an overview. Developmental biology. 2012; 366(1):2.

Available:https://doi.org/10.1016/j.ydbio.2011.12.042

PMid:22230617

PMCid:PMC3351559

De Oliveira C, Franco-Belussi L. Melanic pigmentation in ectothermic vertebrates: occurrence and function. Melanin: Biosynthesis, Functions and Health Effects. Hauppauge: Nova Science Publisher. 2012:213-25.

Cal L, Suarez-Bregua P, Cerdá-Reverter JM, Braasch I, Rotllant J. Fish pigmentation and the melanocortin system. Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology. 2017;211:26-33.

Available:https://doi.org/10.1016/j.cbpa.2017.06.001

PMid:28599948

Parichy DM. Evolution of pigment cells and patterns: recent insights from teleost fishes. Current Opinion in Genetics & Development. 2021;69:88-96.

Available:https://doi.org/10.1016/j.gde.2021.02.006

PMid:33743392

PMCid:PMC8364858

Singh AP, Dinwiddie A, Mahalwar P, Schach U, Linker C, Irion U, Nüsslein-Volhard C. Pigment cell progenitors in zebrafish remain multipotent through metamorphosis. Developmental cell. 2016; 38(3):316-30.

Available:https://doi.org/10.1016/j.devcel.2016.06.020

PMid:27453500

Budi EH, Patterson LB, Parichy DM. Post-embryonic nerve-associated precursors to adult pigment cells: genetic requirements and dynamics of morphogenesis and differentiation. PLoS Genetics. 2011;7(5) :e1002044.

Available:https://doi.org/10.1371/journal.pgen.1002044

PMid:21625562 PMCid:PMC3098192

Patterson LB, Parichy DM. Zebrafish pigment pattern formation: insights into the development and evolution of adult form. Annual Review of Genetics. 2019;53:505-30.

Available:https://doi.org/10.1146/annurev-genet-112618-043741

PMid:31509458

Weston JA. The migration and differentiation of neural crest cells. Advances in morphogenesis. 1970;8:41-114.

Available:https://doi.org/10.1016/B978-0-12-028608-9.50006-5

PMid:4906187

Bagnara JT, Bareiter HJ, Matoltsy AG, Richards KS. Biology of the integument vertebrates. Berlin: Springer-Verlag. 1986; 2,136-149.

Le Douarin N, Kalcheim C. The neural crest. Cambridge university press; 1999

Available:https://doi.org/10.1017/CBO9780511897948

PMCid: PMC6786018

Thody AJ, Shuster S. Melanophores, melanocytes and melanin: Endocrinology and pharmacology. In Pharmacology of the Skin I: Pharmacology of Skin Systems Autocoids in Normal and Inflamed Skin Berlin, Heidelberg: Springer Berlin Heidelberg. 1989;257-269.

Available:https://doi.org/10.1007/978-3-642-73797-8_16

Murisier F, Beermann F. Genetics of pigment cells, lessons from the tyrosinase gene family. Histology and histopathology; 2006.

Irion U, Nüsslein-Volhard C. The identification of genes involved in the evolution of color patterns in fish.Current Opinion in Genetics & Development. 2019; 57:31-8.

Available:https://doi.org/10.1016/j.gde.2019.07.002

PMid: 31421397

PMCid: PMC6838669

Nielsen HI, Dyck J. Adaptation of the tree frog, Hyla cinerea, to colored backgrounds, and the role of the three chromatophore types. Journal of Experimental Zoology. 1978;205(1):79-94.

Available:https://doi.org/10.1002/jez.1402050111

Höglund E, Balm PH, Winberg S. Skin darkening, a potential social signal in subordinate arctic charr (Salvelinus alpinus): the regulatory role of brain monoamines and pro-opiomelanocortin-derived peptides. Journal of Experimental Biology. 2000;203(11):1711-21.

Available:https://doi.org/10.1242/jeb.203.11.1711

Höglund E, Balm PH, Winberg S. Behavioural and neuroendocrine effects of environmental background colour and social interaction in Arctic charr (Salvelinus alpinus). Journal of Experimental Biology. 2002;205(16):2535-43.

Available:https://doi.org/10.1242/jeb.205.16.2535

PMid:12124377

Sugimoto M, Uchida N, Hatayama M. Apoptosis in skin pigment cells of the medaka, Oryzias latipes (Teleostei), during long-term chromatic adaptation: the Role of Sympathetic Innervation. Cell and Tissue Research. 2000;301:205-16.

Available:https://doi/10.1007/s004410000226

Sherbrooke WC, Hadley ME, Castrucci AD. Melanotropic peptides and receptors: an evolutionary perspective in vertebrate physiological color change. The Melanotropic Peptides. Vol. II: Biological Roles. 1988;175-89.

Raposo G, Marks MS. Melanosomes—dark organelles enlighten endosomal membrane transport. Nature reviews Molecular cell biology. 2007;8(10):786-97.

Available:https://doi.org/10.1038/nrm2258

PMid:17878918 PMCid:PMC2786984

Miyata S, Yamada K. Innervation pattern and responsiveness of melanophores in tail fins of teleosts. Journal of Experimental Zoology. 1987;241(1):31-39.

Available:https://doi.org/10.1002/jez.1402410105

Wucherer MF, Michiels NK. A fluorescent chromatophore changes the level of fluorescence in a reef fish. PLoS One. 2012;7(6):e37913.

Available:https://doi.org/10.1371/journal.pone.0037913

PMid: 22701587

PMCid:PMC3368913

Burton D, Burton M. Essential fish biology: Diversity, structure, and function. Oxford University Press; 2017.

Available:https://doi.org/10.1093/oso/9780198785552.001.0001

Grempel RG, Visconti MA. Color and physiology of pigmentation. In biology and physiology of freshwater neotropical fish 2020;147-162. Academic Press.Grempel RG, Visconti MA. Color and physiology of pigmentation. InBiology and physiology of Freshwater Neotropical Fish Academic Press. 2020;147-162.

Available:https://doi.org/10.1016/B978-0-12-815872-2.00007-5

Fujii R, Miyashita Y. Receptor mechanisms in fish chromatophores-III.Neurally controlled melanosome melanosome aggregation in a siluroid (Parasilurus asotus) is strangely mediated by cholinoceptors.Comparative Biochemistry and Physiology Part C: Comparative Pharmacology. 1976;55(1):43-9

Available:https://doi.org/10.1016/0306-4492(76)90010-1

PMid:8272

Hayashi H, Fujii R. Muscarinic cholinoceptors that mediate pigment aggregation are present in the melanophores of cyprinids (Zacco spp.). Pigment cell research. 1993;6(1):37-44.

Available:https://doi.org/10.1111/j.1600-0749.1993.tb00579.x

PMid:8502624

Nascimento AA, Roland JT, Gelfand VI. Pigment cells: A model for the study of organelle transport. Annual review of cell and developmental biology. 2003;19(1): 469-91.

Available:https://doi.org/10.1146/annurev.cellbio.19.111401.092937

PMid: 14570578

Odenthal J, Haffter P, Vogelsang E, Brand M, Eeden FJ, Furutani-Seiki M, Granato M, Hammer schmidt M, Heisenberg CP, Jiang YJ, Kane DA. Mutations affecting the formation of the notochord in the zebrafish, Danio rerio. Development. 1996;123 (1):103-15.

Available:https://doi.org/10.1242/dev.123.1.103

Available:https://doi.org/10.1242/dev.123.1.391

Jiang M, Paniagua AE, Volland S, Wang H, Balaji A, Li DG, Lopes VS, Burgess BL, Williams DS. Microtubule motor transport in the delivery of melanosomes to the actin-rich apical domain of the retinal pigment epithelium. Journal of cell science. 2020; 133(15):jcs242214.

Available:https://doi.org/10.1242/jcs.242214

PMid: 32661088

PMCid: PMC7420818

Ligon RA, McCartney KL. Biochemical regulation of pigment motility in vertebrate chromatophores: a review of physiological color change mechanisms. Current Zoology. 2016;62(3):237-52.

Available:https://doi.org/10.1093/cz/zow051

PMid:29491911

PMCid:PMC5804272

Svensson PA, Nilsson Sköld H. Skin biopsies as tools to measure fish coloration and colour change. Skin biopsy–perspectives. Croatia: IntechOpen. 2011; 299-316.

Salim S, Ali S. Vertebrate melanophores as potential model for drug discovery and development: A review. Cellular and Molecular Biology Letters. 2011;16(1):162-200.

Available:https://doi.org/10.2478/s11658-010-0044-y

PMid: 21225472

PMCid: PMC6275700

Bikle D, Tilney LG, Porter KR. Microtubules and pigment migration in the melanophores of Fundulus heteroclitus L. Protoplasma. 1966; 61: 322-45.

Available:https://doi.org/10.1007/BF01248988

Rodionov VI, Gyoeva FK, Gelfand VI. Kinesin is responsible for centrifugal movement of pigment granules in melanophores. Proceedings of the National Academy of Sciences. 1991;88 (11):4956-60. Available:https://doi.org/10.1073/pnas.88.11.4956

Rodionov V, Yi J, Kashina A, Oladipo A, Gross SP. Switching between microtubule-and actin-based transport systems in melanophores is controlled by cAMP levels. Current Biology. 2003;13(21):1837-47.

Available:https://doi.org/10.1016/j.cub.2003.10.027

Nilsson H, Wallin M. Evidence for several roles of dynein in pigment transport in melanophores. Cell motility and the cytoskeleton. 1997; 38 (4):397-409.

Available:https://doi.org/10.1002/(SICI)1097-0169(1997)38:4<397::AIDCM9>3.0. CO; 2-0

Tuma MC, Gelfand VI. Molecular mechanisms of pigment transport in melanophores. Pigment Cell Research. 1999;12(5):283-94.

Available:https://doi.org/10.1111/j.1600-0749.1999.tb00762.x

Nilsson H, Wallin M. Evidence for several roles of dynein in pigment transport in melanophores. Cell motility and the cytoskeleton. 1997;38(4):397-409.

Available:https://doi.org/10.1002/(SICI)1097-0169(1997)38:4<397::AID-CM9>3.0.CO;2-0

Ligon RA, McCartney KL. Biochemical regulation of pigment motility in vertebrate chromatophores: A review of physiological color change mechanisms. Current zoology. 2016; 62(3):237-52.

Available:https://doi.org/10.1093/cz/zow051

Prakash BA, Toro CP. Modulating the zebrafish camouflage pathway to illustrate the neuroendocrine control over a robust and quantifiable behavior. Journal of Undergraduate Neuroscience Education.

; 1 8(1):A57.

PMID: 31983901

PMCID: PMC6973300

Mueller KP, Neuhauss SC. Sunscreen for fish: co-option of UV light protection for camouflage. PLoS One. 2014;9(1):e873 72.

Available:https://doi.org/10.1371/journal.pone.0087372

PMid: 24489905

PMCid: PMC3906139

Roulin A. Melanin‐based colour polymorphism responding to climate change. Global Change Biology.2014; 20(11):3344-50.

Available:https://doi.org/10.1111/gcb.12594

Srivastava YP, Jaju BP. Effect of beta adrenoceptor stimulants on melanophore index in frogs. Indian Journal of Pharmacology. 1981;13(2):159 -65.

Hogben LT, Slome D. The pigmentary effector system. VI. The dual character of endocrine co-ordination in amphibian colour change. Proceedings of the Royal Society of London. Series B, Containing Papers of a Biological Character. 1931;108(755):10-53.

Available:https://doi.org/10.1098/rspb.1931.0020

Roggen D. An objective melanophore index. Cells Tissues Organs. 1962;49 (3):260-5.

Available:https://doi.org/10.1159/000141872

PMid: 13982413

Daiwile AP, Naoghare PK, Giripunje MD, Rao PP, Ghosh TK, Krishnamurthi K, Alimba CG, Sivanesan S. Correlation of melanophore index with a battery of functional genomic stress indicators for measurement of environmental stress in aquatic ecosystem. Environmental Toxicology and Pharmacology. 2015;39(2): 489-95.

Available:https://doi.org/10.1016/j.etap.2014.12.006

PMid: 25680093

Hong SM, Laverty G. Fundulus melanophores: From physiology to cell biology. Proceedings of the Association for Biology Laboratory Education. 2011;32: 245-58.

Fujii R, Oshima N. Control of chromatophore movements in teleost fishes. Zoological science. 1986;3(1):13-47.

Available:https://doi.org/10.34425/zs000196

Yadav R., Jain A. Effect of Colchicine (mechanochemical response) on the melanophores of teleost fish: Rasbora elanga. International Journal of Zoology Studies. 2017;2(4):04-09.

Jain AK, Bhargava HN. Studies on the Color-Change Mechanism in a Fresh-Water Teleost, Nandus nandus (Ham.). II. Hormonal Control. Neuroendocrinology. 1978; 26(5):261-9.

Available:https://doi.org/10.1159/000122781

Archana S, Jain AK. Background adaptation in the nocturnal African catfish, Clarias geripinus. International Journal of Recent Scientific Research. 2015;6(12):7740-7746.

Danosky TR, McFadden PN. Biosensors based on the chromatic activities of living, naturally pigmented cells: digital image processing of the dynamics of fish melanophores. Biosensors and Bioelectronics. 1997;12(9-10):925-36.

Available:http://doi.org/10.1016/S0956-5663(97)00028-6

Trajano E, Reis RE, Elina Bichuette M. Pimelodella spelaea: a new cave catfish from Central Brazil, with data on ecology and evolutionary considerations (Siluriformes: Heptapteridae). Copeia. 2004; 2004(2):315-25.

Available: https://doi.org/10.1643/CI-03-144R1

Wilkens H. Evolution and genetics of epigean and cave Astyanax fasciatus (Characidae, Pisces) support for the neutral mutation theory. InEvolutionary Biology: Volume 23 1988; 271-367.

Boston, MA: Springer US.

Wilkens H, Strecker U. Evolution in the Dark, Berlin and Heidelberg: Springer. 2017; 1177.

Available:https://doi.org/10.1007/978-3-662-54512-6

Sita A. Neural and hormonal regulation of melanophore in fish, Puntius species (Ham) Melanophores. Int J Fish Aquat Stud. 2016;4:574-80.

Baker BI, Bird DJ, Buckingham JC. Salmonid melanin-concentrating hormone inhibits corticotrophin release. Journal of Endocrinology. 1985;106(2):R5-8.

Available:https://doi.org/10.1677/joe.0.106R005

PMid: 2991410

Tine M, Bonhomme F, McKenzie DJ, Durand JD. Differential expression of the heat shock protein Hsp70 in natural populations of the tilapia, Sarotherodon melanotheron, acclimatised to a range of environmental salinities. BMC Ecology. 2010;10:1-8.

Available: https://doi.org/10.1186/1472-6785-10-11

PMid: 20429891

PMCid: PMC2873927

Holt EA, Miller SW. Bioindicators: Using organisms to measure. Nature. 2011;3:8-13.

Kaur R, Dua A. Fish scales as indicators of wastewater toxicity from an international water channel. Tung Dhab drain. Environmental Monitoring and Assessment. 2012;1 84:27 29-40.

Available: https://doi.org/10.1007/s10661-011-2147-y

PMid: 21701892

Chaplen FW, Upson RH, Mcfadden PN, Kolodziej W. Fish chromatophores as cytosensors in a microscale device: Detection of environmental toxins and bacterial pathogens. Pigment cell research. 2002;15(1):19-26. Available: https://doi.org/10.1034/j.1600-0749.2002.00069.x

PMid: 11841070

Allen T, Awasthi A, Rana SV. Fish chromatophores as biomarkers of arsenic exposure. Environmental Biology of Fishes. 2004;71:7-11. Available:https://doi.org/10.1023/B:EBFI.0000043145.58953.86

Ohta T. Movement of pigment granules within melanophores of an isolated fish scale. Effects of Cytochalasin B on melanophores. The Biological Bulletin. 1974;146(2):258-66. Available: https://doi.org/10.2307/1540622 PMid: 4822764

Frisch KV. Beiträge zur Physiologie der Pigmentzellen in der Fischhaut. Pflüger's Archiv für die gesamte Physiologie des Menschen und der Tiere. 1911;138(7):319-87. Available:https://doi.org/10.1007/BF01680752

Parker GH. Animal color changes and their neurohumors. The Quarterly Review of Biology. 1943;18(3):205-27.

David MJ, Laties AM. Direct innervations of teleost melanophore. Anat. Rec. 1968;1 62(4): 501- 504. Available:https://doi.org/10.1002/ar.1091620411 PMid: 5701626

Pouchet G. Color changes in crustaceans and fishes. J. Anat. Physiol. 1876;12:1-90.

Lennquist A, Mårtensson Lindblad L, Förlin L. Melanophore sensitivity and pigmentation in fish

exposed to medetomidine. PRIMO 14, Pollutant responses in marine organisms, Florianopolis, Brasilien; 2007.

Bajpai S, Tripathi M. Alteration in pigmentation after fluoride exposure in stinging catfish, Heteropneustes fossilis (Bloch). Journal of Zoology. 2012;1:47-52.

Tripathi M, Tripathi A, Gopal K. Impact of fluoride on pigmentation of a fresh water fish, Channa punctatus. J. Appl. Biosci. 2005;31(1):35-8.

Deepak Kasherwani DK, Lodhi HS, Tiwari KJ, Sanjive Shukla SS, Sharma UD. Cadmium toxicity to freshwater catfish, Heteropneustes fossilis (Bloch). Asian J. Exp. Sci. 2009;23(1):149-156

Pradeep K, Sheikh, IA, Aherwar M, and Ovais M. Methyl parathion induced effects on the Oreochromis mossambica (Peters) Melanophores in vitro. J. of Herbal Medicine and Toxicology.2007;1(2):49- 54.

Singh A, Munshi JD. Effects of sublethal mercuric chloride exposure on melanophores of a catfish, Heteropneustes fossilis(Bloch.). Journal of Environmental Biology. 1992;13(4):303-8.

Raposo G, Marks MS. Melanosomes—dark organelles enlighten endosomal membrane transport. Nature reviews Molecular cell biology. 2007;8(10):786-97. Available: https://doi.org/10.1038/nrm2258 PMid: 17878918 PMCid: PMC2786984

Miyata S, Yamada K. Innervation pattern and responsiveness of melanophores in tail fins of teleosts. Journal of Experimental Zoology. 1987 Jan; 241(1):31-9 Available:https://doi.org/10.1002/jez.1402410105

Wucherer MF, Michiels NK. A fluorescent chromatophore changes the level of fluorescence in a reef fish. PLoS One. 2012;7(6):e37913. Available:https://doi.org/10.1371/journal.pone.0037913 PMid: 22701587 PMCid: PMC3368913

Patil S, Jain A. Role of calcium in melanosome aggregation within Labeo melanophores. Journal of biosciences. 1993; 18:83-91. Available:https://doi.org/10.1007/BF02703040

Fuhrmann MM, Nygård H, Krapp RH, Berge J, Werner I.The adaptive significance of chromatophores in the Arctic under-ice amphipod Apherusa glacialis. Polar Biology. 2011;34:823-32.

Available: https://doi.org/10.1007/s00300-010-0938-1.

Rather YA, Jain AK. Effect of various drugs on isolated scale Melanophores of fishes – A review. Journal on New Biological Reports. 2013;2(3):281-294.

Jadhav PA, Mahavidyalaya V, Bathe PN. Study of Chromatophores of Freshwater Fishes from Amravati Local Market. International Journal of Innovative Science and Research Technology. 2020;7(9):14 69 -1472.

Lennquist A, Lindblad LG, Hedberg D, Kristiansson E, Förlin L. Colour and melanophore function in rainbow trout after long term exposure to the new antifoulant medetomidine. Chemosphere. 2010;80(9): 1050-5. Available:https://doi.org/10.1016/j.chemosphere.2010.05.014 PMid: 20538317

Collis CS. Melanophore potentials of the chromatically intact spinal stoneloach (Noemacheilus barbatulus L.) following adaptation to varying backgrounds. Journal of comparative physiology. 1979;131:13-21. Available:https://doi.org/10.1007/BF00613079

Grempel RG, Visconti MA. Color and physiology of pigmentation. InBiology and physiology of Freshwater Neotropical Fish. 2020; 147-162. Academic Press. Available: https://doi.org/10.1016/B978-0-12-815872-2.00007-5

Cardoso JC, Felix RC, Martins RS, Trindade M, Fonseca VG, Fuentes J, Power DM. PACAP system evolution and its role in melanophore function in teleost fish skin. Molecular and Cellular Endocrinology. 2015;411:130-45. Available:https://doi.org/10.1016/j.mce.2015.04.020 PMid: 25933704

Acharya L, Ovais M. 1 and 2 adrenoceptor mediated melanosome aggregatory responses in vitro in Oreochromis mossambica (Peters) melanophores. Indian Journal of Experimentl Biology. 2007; 45(11): 984 - 991.

Smith HG. The receptive mechanism of the background response in chromatic behaviour of Crustacea Proceedings of the Royal Society of London. Series B-Biological Sciences. 1938;125(839):250-63.

Available:https://doi.org/10.1098/rspb.1938.0025

Peter J, Meitei KV, Ali AS, Ali SA. Role of histamine receptors in the pigmentary responses of the wall lizard, Hemidactylus flaviviridis. Current Science. 2011; 25:226-9.

Auerswald L, Freier U, Lopata A, Meyer B. Physiological and morphological colour change in Antarctic krill, Euphausia superba: a field study in the Lazarev Sea. Journal of Experimental Biology. 2008; 211(24):3850-8. Available:https://doi.org/10.1242/jeb.024232 PMid: 19043057

Flores EE, Chien YH. Chromatosomes in three phenotypes of Neocaridina denticulata Kemp, 1918: morphological and chromatic differences measured non-invasively. Journal of Crustacean Biology.

; 31(4):590-7. Available:https://doi.org/10.1651/11-3457.1

Liu S, Hou Y, Shi YJ, Zhang N, Hu YG, Chen WM, Zhang JL. Triphenyltin induced darker body coloration by disrupting melanocortin system and pteridine metabolic pathway in a reef fish, Amphiprion ocellaris. Ecotoxicology and Environmental Safety. 2024;274:116177. Available:https://doi.org/10.1016/j.ecoenv.2024.116177

Somashekar DS, Majagi SH. Effect of oral contraceptive pills (mala-D) on melanophores of some fresh water fishes. Acta Biologica Turcica. 2021;34(1):1-8.

Brysiewicz A, Formicki K. The effect of static magnetic field on melanophores in the sea trout (Salmo trutta m. trutta Linnaeus, 1758) embryos and larvae. Italian Journal of Animal Science.2019; 8(1):1431-7. Available:https://doi.org/10.1080/1828051X.2019.1680319

Ahmad S, Shukla S, Mishra A, Kasherwani D, Swami VP, Shukla S. Effect of cadmium chloride on general body colouration and chromatophores of stinging cat fish, Heteropneustes fossilis (Bloch). Journal of applied and natural science. 2018;10(2):655-60. Available:https://doi.org/10.31018/jans.v10i2.1758

Dwivedi B, Banerjee S & Vyas R). Monitoring of sublethal effects of chromium on melanophores. Flora and Fauna 2017; 23(2):363-366.

Srivastava A, Parwez I, Srivastava A, Allen T, Singh S. Melanophore index as an indicator for joint heavy metal toxicity in fresh water fish channa punctatus.Int J Pharm Bio Sci. 2016;7(2):95-103.

Kaur R, Dua A. Colour changes in Labeo rohita (Ham.) due to pigment translocation in melanophores, on exposure to municipal wastewater of Tung Dhab drain, Amritsar, India. Environmental toxicology and pharmacology. 2015;39(2):747-57. Available:https://doi.org/10.1016/j.etap.2015.01.007 PMid:25723343

Biswas SP, Jadhao AG, Palande NV. Role of catecholamine and nitric oxide on pigment displacement of the chromatophores of freshwater snakehead teleost fish, Channa punctatus. Fish Physiology and Biochemistry. 2014;40:45 7-67.

Jiang Q, Wong AO. Signal transduction mechanisms for autocrine/paracrine regulation of somatolactin-α secretion and synthesis in carp pituitary cells by somatolactin-α and-β. American Journal of Physiology-Endocrinology and Metabolism. 2013;304(2):E176-86.

Available:https://doi.org/10.1152/ajpendo.00455.2012

Yoshikawa N, Matsuda T, Takahashi A, Tagawa M. Developmental changes in melanophores and their asymmetrical responsiveness to melanin-concentrating hormone during metamorphosis in barfin flounder (Verasper moseri). General and comparative endocrinology. 2013;194:118-23.

Available:https://doi.org/10.1016/j.ygcen.2013.09.006

PMid: 24063954

Amiri MH, Shaheen HM. Chromatophores and color revelation in the blue variant of the Siamese fighting fish (Betta splendens). Micron. 2012;43(2-3):159-69.

Available:https://doi.org/10.1016/j.micron.2011.07.002

Chaudhari SA, Peter J, Galgut JM, Ali SA. Melanin inhibitory and melanin stimulatory effect of extracts of Chlorophytum tuberosum and Chlorophytum borivilianum on isolated fish scale melanophores. AfrJ

Pharm Pharmacol. 2012; 6:919-23.

Xu J, Xie FK. α-and β-Adrenoceptors of zebrafish in melanosome movement: A comparative study between embryo and adult melanophores. Biochemical and Biophysical Research Communications. 2011; 405(2):250-5.

Amiri MH. Postsynaptic alpha 2-adrenoceptors mediate melanosome aggregation in melanophores of the white-spotted rabbitfish (Siganus canaliculatus). Pakistan Journal of Biological Sciences. 2009;12(1):1.

Radhakrishnan MV, Hemalatha S, Paul VI.Effect of cadmium chloride on the melanophores of Channa striatus (Bloch). Indian Journal of Fisheries. 2000;47 (2):135-41.